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Abstract. Text-level discourse parsing is notoriously difficult due to the
long-distance dependency over the document and the deep hierarchical
structure of the discourse. In this paper, we attempt to model the rep-
resentation of a document recursively via shift-reduce operations. Intu-
itively, humans tend to understand macro and micro texts from different
perspectives, so we propose a recursive model to fuse multiple informa-
tion flows and strengthen the representation of text spans. During pars-
ing, the proposed model can synthetically grade each information flow
according to the granularity of the text. Experimentation on the RST-
DT corpus shows that our parser can outperform the state-of-the-art in
nuclearity detection under stringent discourse parsing evaluations.
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1 Introduction

A document usually consists of many related text units organized in the form
of constituency and dependency. As a representative linguistic theory about dis-
course structures, Rhetorical Structure Theory (RST) [11] describes a document
as a discourse constituency tree. As shown in Fig. 1, each leaf node of the tree
corresponds to an Element Discourse Unit (EDU) and relevant leaf nodes are
connected by rhetorical relations to form bigger text spans recursively until the
final tree is built. In particular, a label (either nucleus or satellite) is assigned ac-
cording to the nuclearity of two neighboring document units, where the nucleus
is considered more important.

In this paper, we address the task of RST-style discourse parsing, which
aims to identify the overall rhetorical structure of the entire document. With
the release of RST Discourse Treebank (RST-DT), text-level discourse parsing
has been attracting more and more attention. However, the RST-DT corpus is
limited in size since corpus annotation is time consuming and labor extensive.
In this condition, most of previous studies heavily rely on manual feature en-
gineering [5, 8]. With the increasing popularity of deep learning in NLP, some
researchers turn to DNNs [9, 10, 3]. For example, Li et al. [9] propose a recur-
sive deep model to compute the representation for each text span based on its
subtrees. However, recursive deep models usually suffer from gradient vanishing.
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e1 e2

e3

list

attr

e1: They don't think

e2: it is contemplating a takeover, however,

e3: and its officials couldn't be reached.

Fig. 1. An example of RST discourse tree, where e1, e2, e3 and e4 are EDUs, list and
attr are discourse relation labels, and arrows indicate the nucleuses of relations.

In addition, humans tend to understand macro and micro texts from different
perspectives. Li et al. [10] propose a hierarchical Bi-LSTM model to learn repre-
sentations of text spans, which can store document-level information for a long
period of time. However, text spans in RST-DT are formed recursively in nature,
it is hard for sequence LSTMs to capture discourse structure information.

To address above challenges, we propose the recursive information flow gated
model (R-IFGM) to learn representations of text spans. The proposed model
can well store information for a long time and thus avoid gradient vanishing. In
particular, we introduce two additional information flows, i.e., the state transi-
tion information for long distance dependency and the principal component of
the text span for low-latitude representation of the text. Specially, the R-IFGM
model can grade these information flows according to the granularity of each text
span automatically. Compared with the state-of-the-art, the resulting parser ob-
tains competitive performance under stringent discourse parsing evaluations and
can strongly outperform the corresponding best parser in nuclearity detection
with an absolute gain of 3.2% in F1-measure due to the modeling of multiple
information flows in a recursive way.

2 Parsing Model

A shift-reduce discourse parser maintains two data structures: a stack of par-
tially completed subtrees and a buffer of EDUs yet to be parsed. The parser is
initialized with the stack empty and the buffer contains all EDUs (e1, e2, . . . ,
eN ) of the document in order. When the action reduce is performed, the parser
will choose both the type of nuclearity and relation between the two popped ele-
ments. The shift-reduce system transforms the structure building problem into a
labeling decision problem. During parsing, the parser consumes transitions (a1,
a2, . . . , ak, . . . , a2N−1) constantly according to the state of buffer and stack,
where ak ∈ {shift, reduce}. Mutually, the state of buffer and stack will change
according to the predicted action label. When the buffer becomes empty and the
stack has only one element, the shift-reduce process is ended. The last element
in the stack is the target discourse constituency tree.

2.1 EDU Representation

The LSTM model is meant to maintain a rough summary of the portion of the
sentence has been processed so far. Since an EDU is a sequence of words, we
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employ a Bi-LSTM to encode each sequence constituted by the concatenation of
word embeddings and POS embeddings, obtaining H = (H1, H2, . . . ,Hn). Then
we use the unweighted average to get a summarization of the hidden states,
obtaining H̄. Previous studies on discourse parsing have proved that words at the
beginning and end of EDUs provide quite useful information [5, 7, 9]. Following
their works, we formulate the representation of an EDU as:

xe = [H̄;w1;wn; p1] (1)

[h0; c0] = Wexe + be (2)

where [h0; c0] is a transformed representation of the EDU (leaf node) for LSTM-
style computation.

2.2 Composition Function for Text Span Representation

The representations for non-leaf nodes serve as structure and relation classifica-
tion. When the action reduce is performed, the top two elements in the stack
are entered into a composition function to form the representation for a bigger
text span. The proposed R-IFGM is also a recursive composition function that
can generate the representation for each text span in a bottom-up fashion. Fig.
2 shows the architecture of R-IFGM, which is also a variant of the Tree-LSTM
[14]. The architecture illustrates the input (x), cell (c) and hidden (h) nodes at
the time t. It extends the sequence LSTM by splitting the previous hidden state
vector ht−1 into a left child’s state vector hLt−1 and a right child’s state vector
hRt−1, splitting the previous cell vector ct−1 into cLt−1 and cRt−1.

Different from other tree-structured LSTMs, we bring two additional infor-
mation flows as external inputs. For the state transition information, we employ
a state tracker here to track the changing states of the stack and buffer to cap-
ture the long distance dependency. For the text span’s principal component, we
introduce the smooth inverse frequency (SIF) [1] into this paper to supply a
low dimension representation of the text span to form. Additionally, the hid-
den states of the left and right child nodes supply the structure information in
nature. Generally, we expect the model to have the ability to automatically as-
sign weights on the three gates to choose which information is more important

""

Fig. 2. Topology of the proposed recursive information flow gated model (R-IFGM).
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in representing the parent node. Therefore, we use a mutually-exclusive gating
mechanism to balance the three information flows.

When the action reduce is performed, the representations of two text spans
are popped from the stack and fed into the composition function to compute the
representation for the new parent node at the time t. The composition function
calculates the parent node’s cell vector ct and the hidden state ht as follows:

Ih = Whht−1 + bh (3)

Is = Wsxst + bs, Ipc = Wpcxpc + bpc (4)

β =
eIs∑
I∈D e

I
, γ =

eIpc∑
I∈D e

I
(5)

gt = Wg(βxst ⊕ γxpc ⊕ (1− β − γ)ht−1) + bg (6)

ct =
∑

N∈{L,R}

fNt−1 � cNt−1 + it � gt (7)

ht = ot � tanh(ct) (8)

where ht−1 refers to the concatenation of the top two hidden states popped from
the stack, D = {Ih, Ipc, Is}, fNt−1 is the forget gate, it is the input gate, ot is the
output gate, ⊕ is the concatenation, and � is the element-wise product. The
new pair (ht, ct) that represents a new text span is then pushed onto the stack.
The external inputs xpc and xst are detailedly described in Section 2.3.

2.3 The Principal Component of Text Span & State Transition

Getting a precise representation of the text span is difficult as many documents
are quite long sequences, so auxiliary information is urgently needed. In this
section, we give an explanation about the two external inputs, i.e., the text
span’s principal component and the state transition information.

The Principal Component of Text Span Usually, it is difficult to capture
semantic information recursively when the document tree is extremely deep. So, a
method to abstract the most principal component of each text span is necessary.
In a discourse tree, each inner node can uniquely identify a text area, which
contains a set of EDUs that provide complete semantic information for the text
area. We aim to translate each text span into a lower latitude representation. The
SIF proposed by Arora et al. [1] is an unsupervised sentence embedding method.
It achieves significantly better performance than certain supervised methods
including LSTMs on most of textual similarity tasks. For a start, we borrow
the SIF [1] to get unsupervised representation of each EDU in the text span.
Then, we get a summarization of this text span by the unweighted average on
the representations of EDUs. When the action reduce is performed, the top two
text spans in the stack are popped to form a bigger text span and we formulate
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the principal component of the text span as:

s = [s1, . . . , sm] = SIF(E, p(w), a) (9)

xpc = average(s) (10)

where E is the set of EDUs in the text span, p(w) denotes the estimated prob-
abilities of words in the Wall Street Journal articles used in Treebank-2, and a
is the weighting parameter mentioned in the paper [1].

State Transition Our proposed discourse parser is a shift-reduce discourse
parser, which maintains a stack and a buffer. During parsing time, the stack and
buffer generate a series of changing states according to the transition actions.
We aim to use a state tracker to capture the long distance dependency. The
state tracker is a sequence tracking LSTM [2] and it is meant to maintain a
low-resolution summary of the portion of the discourse has been processed so
far. We choose the first element in the buffer and the top two elements in the
stack to represent the state at the tth step, obtaining statet = [h0t b;h

−1
t s ;h−2t s ].

Then, we take those changing states as a series of inputs to the state tracker. The
output at the time t will supply state transition information for the composition
function (see Section2.2) and it also supplies features for the transition classifier
to predict the next transition action at the time t.

xst, ct = LSTM(ct−1, statet) (11)

3 Classification & Training

In this work, we combine the nuclearity and relation together, obtaining a set of
NR labels. We build two classifiers in this paper for transition and NR classifica-
tion. For the first classifier, we use the hidden state i = xst of the state tracker as
its input at the time t. For the second, we use the hidden states of the two text
spans encoded by R-IFGM as additional inputs for the NR tags are assigned di-
rectly between them. And the overall input is defined as i′ = [xst;hspanl

;hspanr
].

For each classifier, we feed these vectors into respective output layers:

ys = tanh(Wsi+ bs) (12)

ynr = tanh(Wnri
′ + bnr) (13)

where Ws ∈ Rl, Wnr ∈ Rm×l′ , bs ∈ R, bnr ∈ Rm are model parameters, m = 41
is the number of combinations of nuclear and relation tags in RST-DT.

For transition classification, we expect the output score of the correct la-
bel to be much larger than the wrong one. And, we set a max-margin value as
a threshold for this difference. For the NR classifier, we train it to maximize
the conditional log-likelihood of gold labels. During training, the two classifiers
are trained according to their respective goals and update the shared parame-
ters alternatively. We add an additional max-margin objective to strengthen the
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nuclearity classification. And the general training objective is defined as:

L(Θ) =− log(pnrg ) +
λ

2
‖Θ‖2

+
Σ

lys
i=0max(0,M − ysg + ysi)

lys

+ ζ
Σ

lyn
i=0max(0,M − yng

+ yni
)

lyn

(14)

where pnrg is the softmax probability of the gold relation label, lys = 2, lyn = 3
are the sizes of transition and nuclearity prediction, and M is the margin value.

4 Experimentation

The RST-DT corpus annotates 385 documents from the WSJ which is mainly
divided into two data sets (347 for training and 38 for testing). Following previous
works, we binarize those non-binary subtrees with right-branching and use the
18 coarse-grained relations to evaluate our parser with gold-standard EDUs.

4.1 Experimental Settings

The metrics of RST discourse parsing evaluation include span, nuclearity and
relation indication. Moery et al. [12] prove that most gains reported in recent
publications are an artefact of implicit difference in evaluation procedures, and
the original RST-Parseval overestimates the performance of discourse parsing.
In this work, we randomly select 34 documents from the training set as the
development set and employ a more stringent metric [12] to evaluate our parser.
For fair comparison, scores we report are micro-averaged F1 scores in default.

We optimized following parameters during training: the learning rate is 0.001,
the dropout rate is 0.2, the dimension of POS tags is 50, the hidden size of
R-IFGM is 640. The l2 regularization parameter and the parameter ζ in the
loss function are set by 10−5 and 0.6 respectively. We use word representation
based on the 1024D vectors provided by ELMo [13] and we do not update the
vectors during training. The model is trained with Adam to minimize the loss
objective. We trained the model iteratively on the training set by 10 rounds.
The development corpus was used to choose the best model and the final model
was evaluated on the test set after parameter tuning.

4.2 Experimental Results

We show three groups of comparisons here to illustrate the results of our exper-
iments with respect to span (S), nuclearity (N), relation (R) and full (F).

Comparison with the baseline model Inspired by Li et al. [9] and Li et al.
[10], we select the Tree-LSTM as our baseline model. This is done by manually
setting λ and γ equal to zero, and other settings are consistent with R-IFGM.
Then, we let the model to decide the value of λ and γ automatically. From the
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Table 1. Performance comparison for different settings of our system.

System Setting S N R F

Baseline 67.9 55.3 43.5 43.2
R-IFGM 68.2 57.7 46.1 45.7

Table 2. Performance comparison for different approaches (borrowed from [12]).

Parser S N R F

Feng and Hirst [5] 68.6 55.9 45.8 44.6
Ji and Eisenstein [7] 64.1 54.2 46.8 46.3
Joty et al. [8] 65.1 55.5 45.1 44.3
Hayashi et al. [6] 65.1 54.6 44.7 44.1

Braud et al. [4] 59.5 47.2 34.7 34.3
Li et al. [10] 64.5 54.0 38.1 36.6
Braud et al. [3] 62.7 54.5 45.5 45.1
Ours 68.2 57.7 46.1 45.7

comparison in Table 1, the information flows of us is useful and the performance
on nuclearity and relation indication is greatly improved by using R-IFGM to
compute the representation of each text span. In particular, we analyze how the
model assigns weights for these information flows in Section 4.3.

Comparison with other systems We compare our parser with seven parsers
mentioned in [12] using the same evaluation metrics, and one can refer to the
paper for more details. As shown in Table 2, we divide these systems into systems
based on traditional methods and neural networks. From the results, systems in
the first group are competitive with systems in the second group. Our parser
is also based on neural network methods and it can strongly outperform other
systems in nuclearity detection. The scores of ours in span and relation are
relatively lower than the corresponding best results but better than most parsers.
It is worth emphasizing that we exclude these complicated features others use
in the aim to show the effect of the deep learning model itself.

In this work, we propose the R-IFGM model aiming to improve the model
of Li et al. [9] and Li et al. [10]. Therefore, we compare with their works to
further evaluate the performance of our method. Unfortunately, Moery et al. [12]
replicate nine parsers in their paper except the parser of Li et al. [9]. Therefore,
we use the same evaluation metrics used in [9] and [10] to examine the effect
of our model, and the performance of their parsers is borrowed from published
results. For fair comparison, we employ the same word embeddings as Li et al.
[10], and the overall performance is reported in Table 3. From the results, our
proposed model can outperform the two parsers in span, nuclearity and relation
detection, which further proves the effectiveness of our model.
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Table 3. Performance comparison with models of Li et al. [9] and Li et al. [10].

Parser S N R

Li et al. [9] 82.4 69.2 56.8
Li et al. [10] 84.2 70.0 56.3
Ours 85.1 71.4 58.1

4.3 Analysis

Why the R-IFGM can help improve RST discourse parsing? To answer this
question, we count the distribution of text spans’ EDU numbers and find that
about a quarter of text spans contain more than 7 EDUs. In addition, the longest
document in RST-DT contains 304 EDUs and each document contains about 56
EDUs on average. In this condition, we give another statistic about the averaged
proportion of each information flow with respect to the EDU number, as shown
in Fig. 3. We assume that the more EDUs a text span has, the higher level
of granularity the text span has. The figure shows that when the EDU number
becomes larger, the proportion of structure information gets lower and the model
will pay more attention to the state transition information and the text span’s
principal component.

General recursive deep models usually suffer from gradient vanishing. The
baseline model of us works like a traditional Tree-LSTM model. It itself can
store long distance information and thus effectively avoid gradient vanishing.
To show the difference between the proposed R-IFGM and the baseline model,
we give another statistic about the precision of span, nuclearity and relation
detection for text spans with respect to the number of EDUs, as shown in Fig.
4. In the prediction of text spans with less than 5 EDUs, the superiority of the
proposed R-IFGM is not obvious and it is even worse than the baseline model
in span detection. The statistic shows that when the number of EDUs becomes
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Fig. 4. The performance of our parser over text spans with different EDU numbers.

larger, the proposed R-IFGM performs relatively better. This superiority is ev-
ident in nuclearity and relation detection. From the statistic, we can draw an
experimental conclusion that the proposed model has the ability to grade the
information flows according to the granularity of each text span, and thus enable
it to understand a document from different perspectives.

5 Related Work

Discourse parsing has largely concentrated on the RST-DT, which is the largest
corpus of documents annotated with discourse structures. Early works on dis-
course parsing rely mainly on hand-crafted features [8, 7, 5]. Among these studies,
SVM and variants of CRF models are mostly employed, and lexical, syntactic
and semantic features are heavily used. With the increasing popularity of DNNs,
there exist some neural network-based discourse parsers. Li et al. [9] firstly pro-
pose to build a recursive deep model in discourse parsing. Braud et al. [4] use a
heuristic method to constrain their proposed seq2seq parser to build trees. Li et
al. [10] build a CKY chart parser with the attention-based hierarchical Bi-LSTM.
The parser proposed by Braud et al. [3] is a variant of the transition-based parser
with a number of sophisticated features.

Inspired by Li et al. [9], we build a recursive deep model to generate repre-
sentations for text spans. This recursive framework computes the representation
for each parent based on its children recursively in a bottom-up fashion. How-
ever, recursive deep models are known to suffer from gradient vanishing. Li et
al. [10] propose to employ an attention-based hierarchical Bi-LSTM to alleviate
this problem. Nevertheless, it is hard for sequence LSTMs to provide discourse
structure information. In this work, we absorb the advantages of both Li et al. [9]
and Li et al. [10], and propose a TreeLSTM-style discourse parser. In particular,
humans tend to understand macro and micro texts from different perspectives
and the documents in RST-DT are known to have quite deep structures. There-
fore, we introduce the R-IFGM to synthetically grade the information flows of
us automatically according to the granularity of each text span.
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6 Conclusion

We propose a transition-based discourse parser based on a recursive deep model.
The R-IFGM of us can fuse multiple information flows according to the granu-
larity of each text span to enrich the representation for text spans. Compared
with previous works, our parser obtains competitive performance under stringent
discourse parsing evaluations. Our future work will focus on extending text-level
discourse parsing to related tasks like macro-sentiment analysis.
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