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Abstract. Automatic evaluation of semantic rationality is an important yet chal-
lenging task, and current automatic techniques cannot effectively identify whether
a sentence is semantically rational. Methods based on the language model do not
measure the sentence by rationality but by commonness. Methods based on the
similarity with human written sentences will fail if human-written references are
not available. In this paper, we propose a novel model called Sememe-Word-
Matching Neural Network (SWM-NN) to tackle semantic rationality evaluation
by taking advantage of the sememe knowledge base HowNet. The advantage is
that our model can utilize a proper combination of sememes to represent the
fine-grained semantic meanings of a word within specific contexts. We use the
fine-grained semantic representation to help the model learn the semantic de-
pendency among words. To evaluate the effectiveness of the proposed model,
we build a large-scale rationality evaluation dataset. Experimental results on this
dataset show that the proposed model outperforms the competitive baselines.

Keywords: Semantic Rationality · Sememe-Word Matching Nerual Network ·
HowNet.

1 Introduction

Recently, tasks involving natural language generation have been attracting heated at-
tention. However, it remains a problem of how to measure the quality of the gener-
ated sentences most reasonably and efficiently. Such sentence as Chomsky’s famous
words, “colorless green ideas sleep furiously” [4], is correct in syntax but irrational in
semantics. Conventional methods involve human judgments of different quality met-
rics. However, it is both labor-intensive and time-consuming. In this paper, we explore
an important but challenging problem: how to automatically identify whether a sentence
is semantically rational. Based on this problem, we propose an important task: Sentence
Semantic Rationality Detection (SSRD), which aims to identify whether the sentence
is rational in semantics. The task can benefit many natural language processing appli-
cations that require the evaluation of rationality and can also provide insights to resolve
the irrationality in the generated sentences.
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There are some automatic methods to evaluate the quality of a sentence. However,
methods based on the language model [12, 3] do not measure the sentence by ratio-
nality but by commonness (i.e. the probability of a sentence in the space of all pos-
sible sentences). Considering that the uncommon sentences are not always irrational,
this approach is not a suitable solution. Similarity-based methods such as BLEU [18],
ROUGE [15], SARI [23] will fail if human-written references are not available. For
some statistical feature-based methods such as decision tree [7], they only use statisti-
cal information of the sentence. However, it is also essential to use semantic information
in evaluation.

The main difficulty in the evaluation of semantic rationality is that it requires sys-
tems with high ability to understand selectional restrictions. In linguistics, selection
denotes the ability of predicates to determine the semantic content of their arguments.
Predicates select their arguments, which means that they limit the semantic content of
their arguments. The following example illustrates the concept of selection. For a sen-
tence “The building is wilting”, the argument “the building” violates the selectional
restrictions of the predicate, “is wilting”. To address this problem, we propose to take
advantage of the sememe knowledge which gives a more detailed semantic informa-
tion of the word. Using this sort of knowledge, a model would learn the selectional
restrictions between words better.

Words can be represented with semantic sub-units from a finite set of limited size.
For example, the word “lover” can be approximately represented as “{Human | Friend
| Love | Desired}”. Linguists define sememes as semantic sub-units of human lan-
guages [2] that express semantic meanings of concepts. One of the most well-known
sememe knowledge bases is HowNet [5]. HowNet has been widely used in various Chi-
nese NLP tasks, such as word sense disambiguation [6], named entity recognition [14]
and word representation [17]. Zeng et al. [24] propose to expand the Linguistic Inquiry
and Word Count [20] lexicons based on word sememes. There are also some works on
sememe prediction. Xie et al. [22] predict lexical sememe via word embeddings and
matrix factorization. Li et al. [13] conduct sememe prediction to learn semantic knowl-
edge from unstructured textual Wiki descriptions. Jin et al. [9] incorporate characters
of words in lexical sememe prediction.

In this work, we address the task of automatic semantic rationality evaluation by
using the semantic information expressed by sememes. We design a novel model by
combining word-level information with sememe-level semantic information to deter-
mine whether the sememes of the words are compatible so that the sentence does not
violate common perception. We divide our model into two parts: a word-level part and
a sememe-level part. First, the word-level part gets the context for each word. Next, we
use the context of each word to select its proper sememe-level information. Finally, we
detect whether a word violates the selectional restrictions of context words by word-
level and sememe-level, respectively. Our main contributions are listed as follows:

– We propose the task of automatically detecting sentence semantic rationality and
we build a new and large-scale dataset for this task.

– We propose a novel model called SWM-NN that combines sentence information
with its sememe information given by the Chinese knowledge base HowNet. Ex-
perimental results show that the proposed method outperforms the baselines.
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2 Proposed Method

To detect the semantic rationality of the sentence, we should represent the sentence into
fine-grained semantic units. We deal with the task of SSRD with the aid of the sentence
representation and its semantic representation.

Based on this motivation, we propose an SWM-NN model (see Figure 1). This
model can make use of HowNet, which is a well-known Chinese semantic knowledge
base. The overall architecture of SWM-NN consists of several parts: a word-level atten-
tion LSTM, a matching mechanism between the word-level and the sememe-level part,
and a sememe-level attention LSTM. We first introduce the structures of HowNet, and
then we describe the details of different components in the following sections.

w1 w2 w3S111 S112 S113 S121 S122 t2 t3t1

t1

Sememe Layer

Attention Based 
Sense Layer

Attention Based Bi-LSTM 
Layer

Linear Classification Layer

y

Sememe-level part Word-level part

Fig. 1. The overview of SWM-NN model. The sentence first goes through the word-level Bi-
LSTM with self-attenion to get context information. To query the sense and the sememe infor-
mation, each sense is first represented as the average of sememes. The senses of a word are
dynamically combined based on the correponding word-level context, forming a compositional
semantic word representation, which then passes through the sememe-level Bi-LSTM to get con-
text from another view. In this figure, the word w1 has two senses s11 and s12. The sense s11 has
three sememes s111, s112, s113. The sense s12 has two sememes s121, s122.

2.1 Sememes, Senses and Words in HowNet

apple

brand fruit

pattern 
value able bring specific 

brand fruit

word

sememe

sense

Fig. 2. Examples of sememes, senses, and words. We translate them into English.

HowNet annotates precise senses to each word, and for each sense, HowNet an-
notates the significant of parts and attributes represented by sememes. Figure 2 shows
the sememe annotations of the word “apple”. The word “apple” actually has two main
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senses: one is a sort of juicy fruit “fruit”, and the other is a famous computer brand
“brand”. The latter sense “Apple brand” indicates a computer brand, and thus has se-
memes “computer”, “bring”, “Special Brand”.

We introduce the notations used in the following sections as follows. Given a sen-
tence s consisting of a sequence of words {d1,d2, · · · ,dn}, we embed the one-hot
representation of the i-th word di to a dense vector wi through a word embedding ma-
trix. For the i-th word di, there can be multiple senses s(di)

j in HowNet. Each sense

s
(di)
j consists of several sememe words d

(sj)

k in HowNet. The one-hot representation
of the sememe word d is embedded to a dense vector x through a sememe embedding
matrix.

2.2 Word-Level Attention LSTM

To detect the rationality using sentence information, we use a Bi-LSTM encoder with
local attention in the word-level part. We first compute the context output ow from the
source sentence w = {w1,w2, · · · ,wL}:

−→o w
i ,
−→
hw

i = LSTMword(wi,
−→
hw

i−1) (1)
←−o w

i ,
←−
hw

i = LSTMword(wi,
←−
hw

i+1) (2)

hw
i = [

−→
hw

i ;
←−
hw

i ] (3)
owi = [−→o w

i ;
←−o w

i ] (4)

where L is the number of words in the source sentence. Then, we use the context output
ow = {ow1 ,ow2 , · · · ,owL} to compute an attention vector αw = {αw

1 , α
w
2 , · · · , αw

L}.
Finally, we use the context output ow and the attention vector αw to compute a word-
level representation of the sentence cw. The calculation formulas are as follows:

uw
i = tanh(Wwo

w
i + bw) (5)

αw
i =

exp
(
(uw

i )
Tuw

)∑
j exp

(
(uw

j )
Tuw

) (6)

cw =
∑
i

αw
i o

w
i (7)

where Ww and bw are weight matrix and bias vector, respectively. uw is a randomly
initialized vector, which can be learned at the training stage. The attention mechanism
is proposed in [1], which gives higher weights to certain features that allow better pre-
diction. Through training, the certain feature is likely to be the word that destructs the
rationality of the sentence in semantics.

2.3 Matching Mechanism Layer

In sememe-level part, we average the sememe embeddings to represent each sense of
the word d at first:

s
(d)
j =

1

m
(d)
j

∑
k

x
(sj)
k (8)
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where s(d)j stands for the j-th sense embedding of the word d. m(d)
j , x(sj)

k stands for
the number of sememes and the k-th sememe embedding belonging to the j-th sense
of d (i.e. s(d)j ), respectively. Hence, given a word di, we can get the sense embedding

matrix of di, referred to as S(di) = [s
(di)
1 , s

(di)
2 , · · · , s(di)

ni ], where ni stands for the
number of senses belong to di.

To match the appropriate senses and sememes to each word given a specific sen-
tence, we add a matching mechanism that is based on global attention. Since the output
of word-level LSTM owi can be viewed as the contextual representation. For each word
di, we have the output state owi in word-level LSTM and its sense embedding matrix
S(di) = [s

(di)
1 , s

(di)
2 , · · · , s(di)

n ].
We compute the sememe-level representation ti of the word di as follows:

βj =
exp

(
g(owi , s

(di)
j )

)
∑

k exp
(
g(owi , s

(di)
k )

) (9)

ti =
∑
j

βjs
(di)
j (10)

Here the score function g is computed as follows:

g(owi , s
(di)
j ) = tanh(Wxo

w
i )� tanh(Wys

(di)
j ) (11)

where Wx and Wy are model parameters, which can be learned at the training stage.
Through matching mechanism layer, the fine-grained semantic dependency between
words in a sentence can be modeled by the combination of sememes.

2.4 Sememe-level Attention LSTM

For each sentence s = {d1,d2, · · · ,dn}, we can get its sememe-level sequences
{t1, t2, · · · , tn} based on the computation mentioned above. We use a sememe-level
attention LSTM, which is similar to the word-level attention LSTM, to get the sememe-
level representation of the sentence cs.

2.5 Combining Information from the two parts

In order to avoid semantic rationality signals being dominated by sentence-level or
sememe-level [25], we add gates controlled by the representations of two parts. We
combine information from two parts as follows:

zw ∝ exp(Wwcw + bw) (12)
zs ∝ exp(W scs + bs) (13)
c = cw � zw + cs � zs (14)

where zw + zs =
−→
1 . Then the probability distribution of label is predicted by (f(·)

refers to a non-linear function ReLU [16])

p = softmax(f(Wc+ b)) (15)
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θ is the model parameter and y is the ground-truth label of the sentence, then the cross
entropy loss is

L(θ) = −y log p(y|w, s,θ) (16)

3 Experiments

In this section, we evaluate our model on the dataset we build for the SSRD task. Firstly,
we introduce the dataset and the experimental details. Then, we compare our model
with baselines. Finally, we provide the analysis and the discussion of the experimental
results.

3.1 Dataset

We create our dataset by collecting Chinese Word Segmentation and Part-of-Speech
Tagging corpus from China National Language Committee3. Then we divide this dataset
into training, validation, and test set. To create sentences lacking semantic rationality
(i.e. the negative sentences), we randomly do one of the following operations on every
sentence in each set:

1. Replace word with the same POS word in vocabulary randomly. The vocabulary
was created from our corpus.

2. Reverse the position of two words of the same POS randomly.

The negative sentences in [20] are generated by n-gram language model. However,
this method may induce syntax errors rather than semantic errors. The two operations
in this paper will only cause semantic errors. For example, Chomsky’s famous semanti-
cally irrational sentence, “colorless green ideas sleep furiously”, can be created by our
method. In addition, our method includes some operations like exploiting polysemy-
replacement, swapping semantic roles, etc.

In order to ensure the irrationality of these negative sentences, we operate sentences
whose lengths are more than 8 and we do not replace or reverse the punctuation of the
sentence. In the meantime, we ask the human annotators to check the irrationality of
these negative sentences in our test set.

The details of each set are shown in Table 1 .

Dataset #Total #Positive #Negative
Training set 160,000 80,000 80,000
Validation set 20,000 10,000 10,000
Test set 20,000 10,000 10,000

Table 1. Statistical information of the final dataset. Positive and Negative denote whether the
sentence is semantic rational.

3 http://www.aihanyu.org/cncorpus/
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3.2 Experimental Details

We use accuracy as our evaluation metric instead of the F-score, precision, and recall
because the positive and negative examples in our dataset are balanced. As the words
and the sememes are different in meaning, we do not share their vocabulary. We build up
vocabularies for words and sememes with the size of 50,000 and 20,000, respectively.
Some words are not annotated and thus have no sememes in HowNet. We simply use
the word itself as the sememe.

We use the same dimension of 128 for word embeddings and sememe embed-
dings, and they are randomly initialized and can be learned during training. Adam
optimizer [11] is used to minimize cross entropy loss function. We apply dropout reg-
ularization [21] to avoid overfitting and clip the gradients [19] to the maximum norm
of 3.0. During training, we train the model for 20 epochs and monitor its performance
on the validation set after every 200 updates. Once training is finished, we select the
model with the highest accuracy on the validation set as our final model and evaluate
its performance on the test set.

3.3 Baseline Models

– N -gram language model: We use the best performing N -gram smoothing meth-
ods, the interpolated Kneser-Ney algorithm [12, 3]. The positive sentences in the
training set are used to train the model. For detecting rationality, we calculate a
threshold based on the validation set that maximizes the accuracy. Then, we predict
the test set using the model and the threshold.

– Traditional machine learning algorithms: We use various machine learning clas-
sifiers to predict the labels based on the tf-idf features of the sentence. We compute
the probability distribution of the label by inputting the sentence word sequence
and its sememe word sequence to the model respectively. Then we ensemble the
probability of both sequences to get the label prediction.

– Neural networks models: We apply two representative neural network models:
Bi-LSTM [8] and CNN [10]. The neural network is used for learning the vector
representation for the word sequence and the sememe sequence, respectively. Then
both outputs are concatenated and serve as input to a linear classifier.

– Human evaluation: For 500 randomly chosen sentences, we provide human anno-
tators with the true sentence and the permuted sentence. Then we ask them to select
a better sentence. The result can be viewed as an upper bound for this task.

3.4 Results

In this subsection, we present the results of evaluation by comparing our proposed
method with the baselines. Table 2 reports experimental results of various models. From
the results, we can observe that:

– The proposed SWM-NN outperforms all the baselines except the human evaluation.
Our model uses dual-attention mechanism that consists of local attention in both
levels, and a global attention to match the word to its appropriate combination of
the sememes. By properly incorporating knowledge in HowNet and information of
the source sentence, our model is capable of making more accurate predictions.
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Models Accuracy
Interpolated Kneser-Ney 53.2%
Random Forest 60.5%
Linear SVM 58.7%
SVM 57.1%
Naive Bayes 54.6%
CNN 62.7%
Bi-LSTM 63.5%
SWM-NN 69.1%
Human Evaluation 94.4%

Table 2. Comparison between our proposed model and the baselines on the test set. Our proposed
model is denoted as SWM-NN.

– We see that the interpolated Kneser-Ney language model get the lowest prediction
accuracy in the baseline model. It partly verifies our arguments on resolving the
task using language models.

– The traditional machine learning algorithms with sememe information only achieve
the accuracy of 60.5% at best. Neural network based methods perform much bet-
ter and beat other baselines. This shows that the generalization ability of neural
networks is better (the positive sentences and their similar negative sentences only
coexist in the same data set). However, the neural network with the sememe infor-
mation given by HowNet only achieves the accuracy of 63.5% at best. It suggests
merely providing the sememes to the models is not sufficient for detecting ratio-
nality. Further matching of sememes to check the compatibility of the sememes is
crucial to the overall performance.

4 Analysis and Discussions

Here, we perform further analysis on the model, including the ablation study, error
analysis, and some further experimental results.

4.1 Exploration on Internal Structure of the Model

As shown in Table 2, our SWM-NN model outperforms all the baselines. Compared
with the baseline neural network model, the proposed model has a dual-attention mech-
anism, that is, (1) a local attention mechanism in both the word-level and the sememe-
level and (2) a global attention mechanism to match information between two levels.
In order to explore the impact of the internal structure of the model, we remove the
components of our model in order. The performance is shown in Table 3.

– w/o Match means that we do not match the context of the word to its sememe
information by the global attention mechanism. For each word d, we only average
all the sememe embedding to get t as follows:

t =
∑
j

1

n
s
(d)
j (17)
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Models Accuracy Decline
SWM-NN 68.7% −−
w/o Match 67.6% ↓ 1.1%
w/o Dual-attention 63.1% ↓ 5.6%
w/o HowNet 67.0% ↓ 1.7%
w/o Word-level cw 67.9% ↓ 0.8%

Table 3. Ablation Study on the validation set.

n is the number of senses of this word.
– w/o Dual-attention means that we do not use dual attention mechanism (i.e. local

attention in both levels and global attention between two levels) in the proposed
model any more, which is the same as the Bi-LSTM in the baseline models.

– w/o HowNet means we do not use the knowledge given by HowNet. It is equivalent
to our model without sememe-level local attention and matching mechanism.

– w/o Word-level cw means without word-level representation, that is, we only use
cs to predict label. But we still use other structures of SWM-NN.

From the results shown in Table 3, we can observe that:

– Without the knowledge in HowNet, the accuracy of the model drops by 1.7% (in
w/o HowNet). The sememe knowledge given by HowNet can provide some fine-
grained semantic information, and thus can help the task of SSRD.

– It is useful to model the relation between the sentence and HowNet knowledge
more properly. We can observe that without the matching mechanism between the
sememe-level and the word-level, the accuracy of the model drops by 1.1% (in w/o
Match). It shows matching mechanism can give a more rational and fine-grained
semantic representation of the sentence. Furthermore, this sort of representation
can help the task of SSRD.

– The Dual-attention mechanism is of great help to our task. Without this mechanism,
the accuracy of the model drops by 5.6% (in w/o Dual-attention). It shows this sort
of hierarchical attention mechanism in SWM-NN can make use of the information
of sentence and HowNet properly to achieve our task.

– Without the word-level representation of the sentence, the accuracy of the model
drops by 0.8% (in w/o Word-level cw). It is a loss that cannot be ignored. Even if
we get a proper sememe representation, the representation of sentence in word-level
is also helpful in our task.

Based on the ablation studies above, every part of our model is necessary to achieve
the best result in the task of SSRD.

4.2 Case Study

Here we show a sentence and its dual-attention weight visualization in the test set for
case study. Table 4 shows an example that gets a correct prediction in our test set. This
sentence is a negative sentence in the test set and the bold word is the word we replaced.
We can see that the “Word-level attention” gives higher weights to the word “全总”. It



10 S. Liu et al.

Test Sentence 全总等单位慰问本教教教师师师市市市

Word-level attention 全总等单位慰问本教师市
Matching attention 全总：全总

等：实体、属性、类型
∣∣∣功能词∣∣∣相等∣∣∣实体、等级∣∣∣等待

单位：单位、量度
∣∣∣事务、从事、组织

慰问：安慰、问候

本：主
∣∣∣读物∣∣∣己∣∣∣事件、实体、根、部件∣∣∣实体、根、部件∣∣∣簿册∣∣∣植物、身、部件∣∣∣资

金、金融
∣∣∣现在∣∣∣特定

教师：人、教、教育、职位

市：地方、市
∣∣∣专、地方、市

Sememe-level attention 全总等单位慰问本教师市

Table 4. Some cases in the test set. Test Sentence 1 is a negative sentence. It is created by re-
versing the position of two words of the same POS randomly. The bold words are the words we
replaced. Test Sentence 2 is a positive sentence. Word-level attention, Matching attention, and
Sememe-level attention show the dual-attention mechanism visualization during prediction. In
“Matching attention”, the symbol “

∣∣∣” separates different senses of the word.

might because the word “全总” is the abbreviation for the word “全市总工会 (National
Federation of Trade Unions)” in Chinese so that it confuses the word-level model. But
this sort of situation is not conducive to the prediction. In the “Matching attention”,
we can see that the global attention mechanism weights are mainly correct except the
word “等 (sort)”. After the matching mechanism, we can observe that “Sememe-level
attention” gives higher weights to the wrong word “教师 (teacher)” and “市 (city)”.
This shows that in order to predict correctly, our model gives a higher attention to the
wrong words.

4.3 Error Analysis

For error analysis, we first construct four datasets. The permuted sentences in each set
are created as follows.

– Dataset1: Replace one word with the same POS randomly.
– Dataset2: Replace two words with the same POS randomly.
– Dataset3: Reverse the position of two words of the same POS randomly.
– Dataset4: Reverse the position of two words randomly.

We train our models on each training set and then evaluate on the corresponding test
set. Meanwhile, we select 500 sentences from each set and ask the human annotators to
annotate. Table 5 shows the results of each dataset.

From the results shown in Table 5, we can see that

– For the model, the most difficult dataset is the dataset1 where the permuted sen-
tences differ in only one word from the true sentences. This shows that the number
of words replaced is the biggest challenge for the model. It is partly because that
replacing one word with the same POS randomly will exploit polysemy as most
of the replaced words have more than one sememes in HowNet. Furthermore, the
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Dataset Model Human
Dataset1 35.5% 5.0%
Dataset2 29.9% 2.2%
Dataset3 32.4% 8.6%
Dataset4 28.3% 1.4%

Table 5. Error rate of the model evaluation and the human evaluation for each set.

model is less effective in predicting dataset3, even though the other datasets are
replaced by two words. It is partly because that reversing the position of two words
of the same POS will swap semantic roles.

– For the human, the most difficult dataset is dataset3. This can also partly show
that dataset3 is the most difficult dataset for judging semantic-rationality. As for
the other three datasets, both the number of replacement word and the POS of
replacement word affects human judgment.

– The result of human prediction is much better than that predicted by the model.
Among all the datasets, however, the performance of the model on dataset3 is not
as bad as the performance of humans on dataset3.

5 Conclusion

In this paper, we propose the task of sentence semantic rationality detection (SSRD),
which aims to identify whether the sentence is rational in semantics. To deal with the
difficulties in this task and overcome the disadvantages of current methods, we propose
a Sememe-Word-Matching Neural Network model that not only considers the infor-
mation of the sentences, but also makes use of the sememe information in knowledge
base HowNet. Furthermore, our model selects the proper sememe information by the
matching mechanism. Experimental results show that our model can outperform various
baselines by a large margin.

Further experiments show that although our model has achieved promising results,
there is still a big gap compared with the artificial results. How to make better use of
other knowledge bases in this sort of task will be our future work.
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